Recent recruit to the Genome Stability Unit, Dr Wayne Crismani, was awarded a grant by the Baker Foundation to support his work into understanding the role of DNA repair in the development and treatment of cancer.

The Angior Family Foundation awarded two grants, to Dr John Scott and A/Prof Carl Walkley, to support their research into mental illness and cancer, respectively.

The Yulgilbar Foundation awarded two grants of $100,000 each to Professor Michael Parker to help his team find new ways to treat Alzheimer’s Disease.

PhD student, Dr Shuh Ying Tan and postdoctoral Fellow, Dr Sophie Broughton, were awarded travel grants of $5,000 each, funded by a generous donation from the Harold Mitchell Foundation.

The 5point foundation awarded a $50,000 grant to A/Prof Jörg Heierhorst to further his research into B cell lymphoma. Lymphomas are the most common form of blood cancer in Australia.

A/Prof Helen Thomas has been awarded two grants by JDRF for her research into the causes of type 1 diabetes.

For this reason, philanthropy is an increasingly important factor in successful medical research.

The 2016 Susan Alberti Mother’s Day Luncheon raises funds to support our young female researchers as they face the challenge of rearing young children while keeping their research on track. Dr Urmi Dhagat from the Structural Biology Unit was the grateful recipient of the Award at the SAMRF event in May.

I would like to take this opportunity to acknowledge the dedication of our Board members over the last year. Particular thanks goes to Mr Anthony Mancini, Mr Ben Fielding and Professor Stephen Smith, who have left the SVI Board in the last 12 months. Thanks also to the Victorian State Government for their Operational Infrastructure Support Scheme, the Federal Government, the Trustees of the Mary Aikenhead Ministries, The University of Melbourne and St. Vincent’s Hospital Melbourne.

SVI is in very good hands today with an excellent Board and Foundation Board, sound finances and outstanding staff. We have a great reputation in the scientific community for our high quality research and our integrity. Our goal, as ever, is to improve the treatment of common diseases and to do so we need to nurture the scientists who contribute so much. We hope that you will help us go on to greater things in collaboration with our many partners, especially those on our campus.

Thanks to you all for your help and support over the past year.

TOM SAYS

Successful research requires big, bold ideas. But more often than not it progresses slowly; with small, unsure steps, turning back and reinventing itself along the way. Our Deputy Director, Michael Parker, likens progress in medical research to a game of snakes and ladders. If things go well, you rapidly ascend a ladder that takes you closer to the answer, but more often than you would like you will find yourself circling back towards the beginning.

One key to success in medical research is to surround yourself with people who think differently from you, a team with varied background, skills and experience. It is this ingredient – diversity – that is highlighted in this newsletter and in our 2015-2016 Research Report. In this newsletter you will read about a number of our researchers who have different skills, but who are working towards the same goals – improving the health of the community.

Another important aspect is diversity of funding – obtaining grants for research from the National Health and Medical Research Council (NHMRC) in the last year has remained very tough (about a one in eight success rate in 2015).
SVI researchers Associate Professor Carl Walkley and Dr Andrew Deans were awarded Mid-Career Fellowships from the Victorian Cancer Agency (VCA) in March this year.

The funding delivers a total of almost $20 million in grants to support Victorian researchers who are at the forefront of the latest discoveries in the fight against cancer. As part of the agency’s commitment to supporting and retaining talented individuals in the field of cancer research in Victoria, the VCA designed the new Fellowship Scheme to support mid-career researchers undertaking high quality translational cancer research.

Both Carl and Andrew are amongst the first recipients of funding through this scheme.

Carl will use the support to further his work into the development of models of human cancer to improve our understanding of bone and blood cancer. In particular, Carl will use his models of human disease to focus on improving the treatment and outcomes for patients with myelodysplastic syndrome and the bone cancer, osteosarcoma.

Andrew’s work is aimed at improving the use of gene panel testing in familial breast cancer clinics. Since 1997, genetic testing of BRCA1/BRCA2 has been offered to selected women attending Familial Cancer Centres in Victoria. For the majority of women (~85%) these tests are uninformative. Continued research has identified additional genetic risk factors for breast cancer that have not been translated into clinical practice due to lack of evidence and defined process. Andrew’s research will build the evidence base required for an expanded set of tests to be delivered. In particular, expertise in functional assays will be used to identify cancer-predisposing variants for risk estimation and clinical evaluation.

The Victorian Cancer Agency says that in 2014, 30,585 Victorians were diagnosed with cancer and 10,744 died from the disease - this equates to 84 new diagnoses and 29 deaths every day.

The 5-year survival rate for Victorians diagnosed with cancer is now 67 per cent compared to 60 per cent 5 years ago and 47 per cent 20 years ago - a testament to the ongoing investment in cancer prevention, treatment and research in Victoria.

Carl and Andrew have each been awarded $600,000 over 4 years to further their research.

IN THIS ISSUE

Tom says

Funding boost

At the forefront of cancer research

Bridging the divide

PhD student puts heart and soul into her work

Young star recognised at 2016 Premier’s Awards

Ray’s story

2016 events diary

The Women in Research Award

Signals of Success: The 2016 Pehr Edman Lecture

New partnerships for SVI

Thank you
Craig’s area of expertise – molecular modeling – allows scientists to view the three-dimensional structure of proteins at the atomic level.

Proteins are the molecular engines that control all functions of the body. What Craig does could be described as visualising a particular protein from a protein’s viewpoint. He wants to know what the protein physically looks like; where its grooves and nooks are; how it interacts with its neighbours; and how these interactions might be disrupted.

Since the majority of drugs work by interfering with protein interactions, Craig’s expertise is invaluable for the design of new drugs. He says that in some cases it has taken many years to determine the structure of a particularly recalcitrant protein.

Craig has recently ‘solved’ the structure of a toxin from a particular type of bacteria in a record 7 days. The bacteria is of interest because it is the cause of an outbreak that has recently infected 57 people in the U.S. and killed 18 people to date. While it is not yet known how the bacteria damages cells, the structure Craig has determined gives some promising clues.

Craig is bringing his industry training to this project and at the same time harnessing the creative energy that the academic environment at SVI has to offer.

Having worked in both academia and the pharmaceutical industry for the Australian company, Biota, Dr Craig Morton can see the virtues of both sectors. He admires the singular focus of the pharmaceutical industry, but thinks that the ability to be creatively nimble is one of academia’s key assets.

BRIDGING THE DIVIDE

Craig’s area of expertise – molecular modeling – allows scientists to view the three-dimensional structure of proteins at the atomic level.

Proteins are the molecular engines that control all functions of the body. What Craig does could be described as visualising a particular protein from a protein’s viewpoint. He wants to know what the protein physically looks like; where its grooves and nooks are; how it interacts with its neighbours; and how these interactions might be disrupted.

Since the majority of drugs work by interfering with protein interactions, Craig’s expertise is invaluable for the design of new drugs. He says that in some cases it has taken many years to determine the structure of a particularly recalcitrant protein.

Craig has recently ‘solved’ the structure of a toxin from a particular type of bacteria in a record 7 days. The bacteria is of interest because it is the cause of an outbreak that has recently infected 57 people in the U.S. and killed 18 people to date. While it is not yet known how the bacteria damages cells, the structure Craig has determined gives some promising clues.

Craig is bringing his industry training to this project and at the same time harnessing the creative energy that the academic environment at SVI has to offer.

Having worked in both academia and the pharmaceutical industry for the Australian company, Biota, Dr Craig Morton can see the virtues of both sectors. He admires the singular focus of the pharmaceutical industry, but thinks that the ability to be creatively nimble is one of academia’s key assets.

Craig’s area of expertise – molecular modeling – allows scientists to view the three-dimensional structure of proteins at the atomic level.

Proteins are the molecular engines that control all functions of the body. What Craig does could be described as visualising a particular protein from a protein’s viewpoint. He wants to know what the protein physically looks like; where its grooves and nooks are; how it interacts with its neighbours; and how these interactions might be disrupted.

Since the majority of drugs work by interfering with protein interactions, Craig’s expertise is invaluable for the design of new drugs. He says that in some cases it has taken many years to determine the structure of a particularly recalcitrant protein.

Craig has recently ‘solved’ the structure of a toxin from a particular type of bacteria in a record 7 days. The bacteria is of interest because it is the cause of an outbreak that has recently infected 57 people in the U.S. and killed 18 people to date. While it is not yet known how the bacteria damages cells, the structure Craig has determined gives some promising clues.

Craig is bringing his industry training to this project and at the same time harnessing the creative energy that the academic environment at SVI has to offer.

Having worked in both academia and the pharmaceutical industry for the Australian company, Biota, Dr Craig Morton can see the virtues of both sectors. He admires the singular focus of the pharmaceutical industry, but thinks that the ability to be creatively nimble is one of academia’s key assets.

Craig’s area of expertise – molecular modeling – allows scientists to view the three-dimensional structure of proteins at the atomic level.

Proteins are the molecular engines that control all functions of the body. What Craig does could be described as visualising a particular protein from a protein’s viewpoint. He wants to know what the protein physically looks like; where its grooves and nooks are; how it interacts with its neighbours; and how these interactions might be disrupted.

Since the majority of drugs work by interfering with protein interactions, Craig’s expertise is invaluable for the design of new drugs. He says that in some cases it has taken many years to determine the structure of a particularly recalcitrant protein.

Craig has recently ‘solved’ the structure of a toxin from a particular type of bacteria in a record 7 days. The bacteria is of interest because it is the cause of an outbreak that has recently infected 57 people in the U.S. and killed 18 people to date. While it is not yet known how the bacteria damages cells, the structure Craig has determined gives some promising clues.

Craig is bringing his industry training to this project and at the same time harnessing the creative energy that the academic environment at SVI has to offer.

Having worked in both academia and the pharmaceutical industry for the Australian company, Biota, Dr Craig Morton can see the virtues of both sectors. He admires the singular focus of the pharmaceutical industry, but thinks that the ability to be creatively nimble is one of academia’s key assets.

Craig’s area of expertise – molecular modeling – allows scientists to view the three-dimensional structure of proteins at the atomic level.

Proteins are the molecular engines that control all functions of the body. What Craig does could be described as visualising a particular protein from a protein’s viewpoint. He wants to know what the protein physically looks like; where its grooves and nooks are; how it interacts with its neighbours; and how these interactions might be disrupted.

Since the majority of drugs work by interfering with protein interactions, Craig’s expertise is invaluable for the design of new drugs. He says that in some cases it has taken many years to determine the structure of a particularly recalcitrant protein.

Craig has recently ‘solved’ the structure of a toxin from a particular type of bacteria in a record 7 days. The bacteria is of interest because it is the cause of an outbreak that has recently infected 57 people in the U.S. and killed 18 people to date. While it is not yet known how the bacteria damages cells, the structure Craig has determined gives some promising clues.

Craig is bringing his industry training to this project and at the same time harnessing the creative energy that the academic environment at SVI has to offer.

Having worked in both academia and the pharmaceutical industry for the Australian company, Biota, Dr Craig Morton can see the virtues of both sectors. He admires the singular focus of the pharmaceutical industry, but thinks that the ability to be creatively nimble is one of academia’s key assets.

Craig’s area of expertise – molecular modeling – allows scientists to view the three-dimensional structure of proteins at the atomic level.

Proteins are the molecular engines that control all functions of the body. What Craig does could be described as visualising a particular protein from a protein’s viewpoint. He wants to know what the protein physically looks like; where its grooves and nooks are; how it interacts with its neighbours; and how these interactions might be disrupted.

Since the majority of drugs work by interfering with protein interactions, Craig’s expertise is invaluable for the design of new drugs. He says that in some cases it has taken many years to determine the structure of a particularly recalcitrant protein.

Craig has recently ‘solved’ the structure of a toxin from a particular type of bacteria in a record 7 days. The bacteria is of interest because it is the cause of an outbreak that has recently infected 57 people in the U.S. and killed 18 people to date. While it is not yet known how the bacteria damages cells, the structure Craig has determined gives some promising clues.

Craig is bringing his industry training to this project and at the same time harnessing the creative energy that the academic environment at SVI has to offer.
Recent SVI PhD graduate, Dr Brian Liddicoat, was one of three early career researchers presented with a commendation at the 22nd Premier’s Award for Health and Medical Research ceremony in June.

Brian returned to Australia to accept the commendation, travelling from The Brigham and Women’s Hospital in Boston USA, where he is currently carrying out his postdoctoral research.

The commendation comes with an $8,000 award to further develop his career in medical research.

Brian did his PhD in SVI’s Stem Cell Regulation Unit under the supervision of Associate Professor Carl Walkley.

During his PhD, Brian showed that a protein called ADAR1 helps protect the body against viral attack by recognising the difference between ‘self’ and non-self’. Mutations in the ADAR1 gene have been linked to a rare genetic autoimmunity disorder called Aicardi-Goutières Syndrome. The research resulted from a collaboration between the group at SVI and researchers in the USA and Germany.

The findings were published in October 2015 in the prestigious Journal Science.

2016 is shaping up to be a milestone year for Brian, who graduated in February 2016.

We congratulate him on the commendation and wish him well in his future research projects.

Ray was 43 when he had a heart attack.

“I was running a small dairy farm and teaching during the day as a permanent relieving teacher for 5th Gippsland schools.

When the heart attack came it was a huge surprise. The pressure in my chest and my burning throat led us to make an appointment with the Foster medical clinic. Within 5 minutes in the car incredible pain in my chest and left arm left me gasping for air.

An ECG revealed I was having a heart attack and the doctors at the clinic had an ambulance landing at the local sports ground within minutes. I can’t remember much on reaching Dandenong Hospital; it’s all a blank until 48 hours later. Apparently I received an injection of a wonder drug that minimizes the damage to the heart. Recovery took about 8 days with daily physiotherapy.

I realised that my family on both of my parents’ side had heart problems, and it was hammered home to me that my smoking habit was a large contributor. The stress of doing 2 jobs didn’t help either. Home life for my wife and my sons was not easy, but they supported the decision for me to quit teaching and grow our dairy enterprise.

With stem cell research making huge headway I am sure that in the future transplants, artificial pumps and even using pig hearts will become redundant. As for disease-causing clogged arteries, etc, present methods using bypass and balloon methods and the wonderful drugs we now have will hopefully also become less often used as our lifestyle and eating habits vastly improve.

Last January 19th was 26 years since that episode. During that time I have had a defibrillator fitted, quit smoking, sold our dairy farm and lived in China for 5 years. Although it’s necessary for me to take a number of daily medications, I have survived to see my sons marry and lived to see my five grandchildren. Life is good.”
Dr Urmi Dhagat from SVI’s Structural Biology Unit was awarded the ‘Susan Alberti Women in Research Award’ at the fourth annual Susan Alberti Medical Research Foundation Mother’s Day Luncheon, held on Thursday May 5 at Leonda by the Yarra.

Urmi, who had her second baby just days after the presentation, received a grant to support the continuation of her research while she is on maternity leave.

“It is really important to put things in place to support female researchers so they can continue with their work and still have a family,” says Susan Alberti AC. “Why not help them succeed? We’re all winners when they make a discovery — the whole community benefits. I’m proud to support these amazing women.”

Urmi’s work at SVI focuses on understanding how cell signaling receptors work. Urmi aims to use this knowledge to identify small drug-like molecules that can modify erroneous signalling, with the long-term aim of developing these molecules into drugs to treat blood cancers and inflammatory diseases like arthritis and asthma.

“I’m hoping my research will help alleviate the pain and suffering caused by these diseases, and am very grateful to be the recipient of this year’s Award,” said Urmi.

“It will allow my research to continue while I’m away on maternity leave and make it possible for me to stay home with my baby in the important first months of her life.”

The special guest speaker at this year’s Event was the Honourable Linda Dessau AM, Governor of Victoria.

October 13
SVI Support Group Black Tie Dinner

October 24
SVI Charity Golf Day

November
Jack Holt Society Bequest Morning Tea
On Friday May 27th, guests at SVI’s 2016 Pehr Edman Lecture were treated to an informative talk by the architect of Europe’s largest collaboration between academia and the pharmaceutical industry, Professor Sir Philip Cohen.

SVI Director Professor Tom Kay welcomed guests and provided a brief overview of SVI, highlighting our researchers and their work in areas such as cancer, Alzheimer’s and diabetes. Professor Sir Gustav Nossal AC CBE then enthusiastically introduced the theme of the lecture – Signals to Success – which focused on Professor Sir Philip Cohen’s work in the Division of Signal Transduction (DSTT) at the University of Dundee.

Professor Cohen has studied protein phosphorylation as a cellular control mechanism for more than 45 years. During his career, he has discovered enzymes that have been targeted by pharmaceutical companies to develop improved drugs for the treatment of cancer and arthritis.

The DSTT, a collaboration which he pioneered in the 1990s, has seen the university work with the world’s major pharmaceutical companies, resulting in breakthroughs in the treatment of cancer, diabetes and other diseases.

Prof Cohen spoke about some of the reasons why the collaboration has continued for so long, “The DSTT works to industrial standards, nearly always deliver what they say they can and on time; the Dundee scientists have proved they can maintain confidentiality, and trust is created in a long collaboration, which increases its value to both parties.”

SVI is happy to welcome its recent corporate supporters, Bertocchi Smallgoods and GS1 Australia.

“At first glance you might wonder what SVI and these companies have in common, but when you dig deeper it’s clear that all three organisations are leaders in our fields. We all take a lot of pride in how we approach and deliver our work”, said Professor Tom Kay, Director of SVI.

“And through supporting SVI, Bertocchi and GS1 are flagging their commitment to making a positive impact on our community.”

Bertocchi and GS1’s support of SVI’s research is a great example of corporate organisations giving back to their community and contributing to the financial stability of the Institute.

“…making a positive impact on our community”
SUPPORT: THANK YOU

On behalf of SVI, I would like to thank everyone who donated in 2015. Thanks also to those donors not listed here and those who wish to remain anonymous. Every donation, no matter what size, has the potential to save lives. Thank you for your support.

SUSAN ALBERTI AC, SVI FOUNDATION CHAIR

100,000 plus
North, C
Shanahan, B
Susan Alberti Medical Research Foundation
The Stuart Leslie Foundation

$50,000 - $99,999
David & Wilma Keath
Family Prescribed Private Fund
Michelmore, J & A
Schiavello, T & E

$10,000 - $49,999
Anastasiou, P & K
Andrew & Geraldine Buxton Foundation
Arcaro, J & G
Aroni, B & Kaldor-Aroni, R
Bell Charitable Fund
Bertocchi, A & C
Bertocchi, J & D
Bertocchi Smallgoods Pty Ltd
Briggs, GW
Bristol-Myers Squibb
Burges, T & J
Buxton, M & J
Ceravolo, E & M
Cicero, J & F
Cootes, I & M
Crichton-Brown, A
Forti, T & M
Gillam, J & H
GS1 Australia
Harold Mitchell Foundation
Hatzimoisis, J & G
Hyams, A
Janko Inge Foundation Pty Ltd
Lin Huddleston Charitable Foundation
Lowe, R & D
Macquarie Leasing Pty Ltd
Piedimonte, S & R
Plant, B & K
Saraceno, N & R
SI Capital Pty Ltd
Signorino, J & F
Snowden, G
Tarascio, S & C
The Wolf Foundation
Zagame, V & T
Anonymous

$1,000 - $9,999
Alberti, S
All Souls’ Opportunity Shop
Arthur, J & A
Besser, D & H
Best, J
Bowen, J & M
Brazzale, J
Breakthrough Group
Camuglia, J & N
Carson, S & I
Chappell, J
Clarke, T
Commins, H
Crothers, M
Curtain, M
D’Arcy, J
Edgewise Insurance Brokers
Emerson, S & L
F & J Ryan Foundation
Falkiner, N & J
Feldman, S & T
Gourlay, L
Gutman, J & J
Harries, E
Iseli, A & C
Johnston, G & S
Kay, T
Kay, C & Swaney, S
Keene, G & R
Kelly, AP
Knowles, J & Allen, R
Kozica, W & O’Callaghan, D
Longo, M & R
Lord Mayor’s Charitable Foundation
Macquarie Group Foundation
McCarthy, N
McClimontock, P & E
McGinniss, M & L
McKeage, C
McNulty, M
McPhail, B
Mudge, R & S
O’Day, J & S
O’Shananss, M & R
Owen, K & E
Patricia Spry-Bailey Charitable Foundation
Penington, D
Potter, P
Power, T & D
Ralph, J & B
Randall, B
Reid, I
Riley, P & C
Robinson, G & C
Romanes, D
Sevior, E

Smith, JFM
Stocks, A & M
Stutt, D
Tabak, L
Thomas, C & C
Thornton, C & Lorbeek, S
Walpole, D & M
Walters, E & G
Wang, YL
Waters, MJ
Webb, B & M
Webb, J
Webster, N
White, R
Wilkie, R & E
Xipell, J & T
YLC
Anonymous
Anonymous

$500 - $999
Anderson, D
Argyrou, M
Barham, K & P
Barro, R
Bassat, A & N
Beer, N
Cullingford, I
Dennis, B
Edgar, R & D
Fink, Y
Goodrich, M & A
Kurt, N
Loder, R & S
MacKay, D
Marks, S & M
McFarlane, M
McNaughton, B & M
Murphy, T
Nossal, G & L
Pitcher Partners
Rowe, B & P
Sakell, T & E
Smorgon, S & M
Stephen, N
Stevens, R
Valdichiesa Foundation
Woods, M

Trusts and Foundations
5point Foundation
Rebecca L. Cooper Medical Research Foundation
The Ian Potter Foundation
The Marian & E.H. Flack Trust
The Yulgilbar Foundation
Zig Inge Foundation
One in ten Australians over 65 are affected by dementia. This number is expected to reach 900,000 by 2050. Alzheimer’s disease is the most common type of dementia.

The cause of Alzheimer’s is not yet clear, however it is known that the disease targets the brain, resulting in impaired memory, thinking and behavior. While the financial cost of Alzheimer’s in Australia is currently estimated at $3.6 billion per year, the emotional cost to individuals and their families cannot be measured.

Paul tells the story of his wife’s battle with the disease

“We met in London in 1958. Columba was studying anaesthetics and I was studying surgery. Many years later, Columba was diagnosed with Alzheimer’s after we noticed her increasing memory loss. There is a family history on her side; her father and younger sister both had Alzheimer’s for at least 10 years.

Alzheimer’s has changed our living situation and lifestyle tremendously. Our six children and our friends have been very good about it although the impact on the family has, not unexpectedly, been dramatic.

Her future is not good, but she has survived Alzheimer’s for over 10 years and this is more than what we might have expected. She can’t feed herself and tends to drop things a lot, but has not had any falls. It is almost impossible to converse with her, as her speaking ability is very, very minimal.

It is certainly a nasty ongoing disease and more and more people will start suffering from it as we all get older.”

Our research

Researchers at St Vincent’s Institute of Medical Research (SVI) are working to find ways to treat Alzheimer’s disease.

SVI’s Professor Michael Parker is one of Australia’s leading structural biologists. His team is using its expertise to develop drugs to treat the disease. The aim is to block the function of a protein that impedes the clearance of toxic proteins in the brain of people with Alzheimer’s.

To continue our research we need your financial support. Today we are asking for a gift to help Michael’s research and other projects like it.

Please use the attached reply slip if you would like to make a donation or contact us on 03 9231 2480.

You can choose to send a single donation, or pledge an ongoing monthly or annual donation. Donations can also be made on our website at www.svi.edu.au
DONATING TO SVI
WINTER 2016

By supporting SVI’s medical research, you can make a difference.

1. Donate a single gift to SVI
 - $50
 - $100
 - $250
 - $500
 - $1000
 - Other $

2. Become a ‘Friend of SVI’
 Donate a regular gift:
 - Monthly gift amount $
 - Annual gift amount $

3. Join the SVI $10,000 Discovery Fund
 An investment in the $10,000 Discovery Fund is an investment in the future of the Institute. For information, contact Dr Rachel Mudge at the SVI Foundation on (03) 9231 2480.

4. Consider SVI in your Will
 If you would like to talk to SVI about a Bequest in your Will, contact the SVI Foundation on (03) 9231 2480.

See our website, www.svi.edu.au if you would like to make periodic payments from your bank account or credit card.

Donation payment details

- Cheque (please make payable to St Vincent’s Institute)
- Credit card (please tick one of the following cards and complete details)
 - Diners
 - Visa
 - Mastercard
 - Amex

Expiry date Amount being paid $

Name on card

Signature

Please make my receipt out to

Title First Name
Surname
Position Company
Address
Suburb P/Code State
Work Home
Email
Mobile

SVI is endorsed as a tax deductible gift recipient. All donations over $2 are tax deductible. SVIMR ABN: 52 004 705 640.

Please return to:
St Vincent’s Institute of Medical Research,
9 Princes St, Fitzroy, VIC 3065 Tel: (03) 9231 2480
Fax: (03) 9416 2676
Email: foundation@svi.edu.au Web: www.svi.edu.au