scroll
UP

Dr Wayne Crismani

Research Unit

Genome stability

Information

National Health and Medical Research Council Career Development Fellow
Maddie Riewoldt’s Vision Fellow

Professional Experience

2005 B. Biotech (Hons), University of Adelaide
2008 PhD, University of Adelaide
2009-2013 Post-doctoral researcher, INRA, France. Mechanisms of meiosis and recombination laboratory.
2013-2015 Research Scientist, Genomics, DuPont Pioneer, USA. Recombination program leader.
2016- Research Fellow, Genome Stability Unit, St Vincent’s Institute of Medical Research
2017- Honorary Fellow, Department of Medicine, University of Melbourne

Achievements

2013-2017 Australia Research Council, Discovery Early Career Researcher Award (awarded but declined)
2017-2019 Maddie Riewoldt’s Vision Fellow
2017-2020 National Health and Medical Research Council Career Development Fellow level 2

Research Interests

Our vision it to translate basic knowledge of DNA repair pathways into treatments for bone marrow failure syndromes and cancer.
We are interested in understanding the fundamentals of DNA repair pathways in both somatic and reproductive cells. In particular we focus on the Fanconi anaemia pathway, which is essential for repair of crosslinked DNA. We are using the advances that we and other groups are making to identify and characterise potential new treatments for diseases that are caused by problems of DNA repair.
We also focus on how pathways that maintain genome stability in somatic cells also regulate repair of double-strand breaks at meiosis. The orchestrated formation and repair of these breaks are used to generate genetic diversity and keep chromosome numbers constant from one generation to the next.
Students interested in Honours and PhD projects in our lab, please click here,

Selected Publications

1. Crismani, W., Girard, C., Froger, N., Pradillo, M., Santos, J. L., Chelysheva, L., Copenhaver, G. P., Horlow, C., Mercier, R. (2012). FANCM limits meiotic crossovers. Science, 336(6088) 1588-1590 DOI: 10.1126/science.1220381. Recommended by F1000.
2. Crismani, W.†, Portemer, V.†, Froger, N., Chelysheva, L., Horlow, C., Vrielynck, N., Mercier, R. (2013). MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in Arabidopsis thaliana. PLoS Genetics, 9(1), e1003165.
3. Crismani, W.†, Girard, C.†, Froger, N., Mazel, J., Lemhemdi, A., Tran, J., Horlow, C., Mercier, R. (2014) FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi factors, limit meiotic crossovers. Nucleic Acids Research, 42(14), 9087-95.
4. Crismani, W.†, Séguéla-Arnaud, M.†, Mazel, J., Froger, N., Choinard, S., Lemhemdi, A., N. Macaisne, N.,  Van Leene, J., Gevaert, K., De Jaeger, G., Chelysheva, L., Mercier, R. (2015) Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM. PNAS, 112(15), 4713-18.
5. Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lemhemdi, A., Mazel, J., Crismani, W.†, Mercier, R.† (2015) AAA-ATPase FIDGETIN-LIKE 1 and helicase FANCM antagonize meiotic crossovers by distinct mechanisms. PLoS Genetics, 11(9): e1005448. Corresponding author†.
6. Cifuentes, M., Jolivet, S., Cromer, L., Harashima, H., Bulankova, P., Renne, C., Crismani, W., Nomura, Y., Nakagami, H., Sugimoto, K., Schnittger, A., Riha, K., Mercier, R. (2016) TDM1 regulation determines the number of meiotic divisions PLoS Genetics, 12(2):e1005856.
7. Séguéla-Arnaud, M., Choinard, S., Larchevêque, C., Girard, C., Froger, N., Crismani, W., Mercier, R. (2016)  RMI1 and TOP3a limit meiotic CO formation through their C-terminal Domains. Nucleic Acids Research.
8. Van Twest S, Murphy VJ, Hodson C, Tan W, Swuec P, O’Rourke JJ, Heierhorst, J., Crismani, W., Deans, A. (2016) Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway. Molecular Cell

PATENTS
1. Day, K., May, G., Crismani, W., Shares, J. A., Yun, Y. (2016) US Patent Application 15/211053, filed July 15th 2016. Obtaining the genotype of a male gametic cell.
2. Mercier, R., Crismani, W., Girard, C. (2015), Increase in meiotic recombination in plants by inhibiting the FIDG protein. WO patent application 2015001467 A1 – licensed
3. Mercier, R., Crismani, W., Séguela-Arnaud, M. (2015), Increase in meiotic recombination in plants by inhibiting either RECQ4 or TOP3A of the RTR complex. WO patent application 2015181647 A1 – licensed
4. Mercier, R. & Crismani, W. (2013), Increase in meiotic recombination in plants by inhibiting the FANCM protein. WO patent application 2013038376 A1 – licensed